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ABSTRACT

In this paper, a new default intensity model with dual frailties is proposed

and an empirical evidence is provided to prove the model’s adequacy. In

addition to the conventional explanatory variables, Duffie, et al. (2009) in-

troduces a time frailty and Chava et al. (2011) considers an industrial frailty

to model the conditional default dependence. However, from an empirical

study on Taiwan’s public listed firms, Lin and Chen (2015) points out that

the time frailty can only catch the default dependence along the time but

not among the industries. On the other hand, the industrial frailty can only

capture the default dependence from the industrial correlation but not from

the time dependence. Hence, the default intensity model with time and in-

dustrial frailties is recommended. This paper introduces a dual frailty model

to incorporate time and industrial frailties. Using the empirical data of Tai-

wan’s public listed firms from January of 1995 to January of 2015, the dual

frailty model is estimated and the Fisher’s dispersion tests are conducted for

bins from time and from industries. Our empirical findings indicate that the

dual frailty model not only captures the time dependence of default cluster-

ing but also the industrial correlations. Therefore, our dual frailty model

outperforms the intensity model with time frailty of Duffie, et al. (2009) and

the industrial frailty of Chava, et al. (2011).

Keywords: Default clustering, default intensity model, time frailty, industrial

frailty, dual-frailty model

JEL classification: C15, C33, G20
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1 Introduction

Based on the Cox proportional hazard model of Cox (1972), default intensity

model is derived by Lane, Looney, and Wansley (1986) and is widely applied

to study the default probability of firms in finance. In financial literature,

the considered conventional explanatory variables include Altman variables

in Altman (1968), Campbell variables in Campbell et al. (2008), Duffie vari-

ables in Duffie et al. (2007), and Shumway variables in Shumway (2001). To

establish the joint likelihood function and do the maximum likelihood esti-

mation of a default intensity model, the defaults conditional on explanatory

variables, called conditional defaults, are assumed to be independent. How-

ever, using Fisher’s dispersion test and Chi-square test, Duffie et al. (2009)

rejects the conditional independence of defaults and then recommends a time

frailty specified with an OU stochastic process in the default model. The time

frailty indeed is to model the default clustering from time dependence not

captured by the macroeconomic variables considered in the intensity default

model. Huang and Zhang (2011, in Chinese) applies an intensity default

model with a time frailty to compare which sets of considered variables (Alt-

man, Campbell, Duffie, and Shumway variables) have better model fitting

with the empirical data from Taiwan public listed firms. Meanwhile, Chava

et al. (2011) introduces an industrial frailty into the default intensity model

to consider the default dependence caused by industrial momentum. Huang

et al. (2012, in Chinese) applies the intensity default model with industrial

frailty to compare model fittings with different sets of explanatory variables

for Taiwan public listed firms.

However, from an empirical study on Taiwan’s public listed firms, Lin

and Chen (2015, in Chinese) shows that the default intensity model with a

time frailty can only catch the default correlation from time but not from the
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industrial momentum. On the other side, the default intensity model with

an industrial frailty can only catch the default clustering caused by industrial

momentum but not from time. The necessity of a default intensity model

with both time frailty and industrial frailty is therefore raised by Lin and

Chen (2015).

The purpose of this paper is to introduce a default intensity model with

time frailty and industrial frailty. This model is called dual-frailty default

intensity model. The remaining of this paper is organized as follows. Section

2 is to introduce the dual-frailty default intensity model and its estimation.

An empirical study is conducted in section 3. Our empirical data consists

of Taiwan’s public listed firms from January, 1995 to January, 2015. Some

conclusions and suggestions are provided in last section.

2 Dual-Frailty Default Intensity Model

The proportional hazard model of Cox (1972) assumes the hazard function

as:

hi(t) = h0(t) exp(X
′β),

where hi(t) indicates the hazard rate of individual firm i at time t, X denotes

the explanatory variables, and h0(t) is called the baseline hazard. Given

assumption of the baseline hazard rate is constant, h0(t) = λ, the hazard

function can be rewritten as

hi(t) = λ exp(X ′β) = exp[log(λ) +X ′β) = exp(α+X ′β) = λit.

By assuming the default occurrences following a Poisson distribution with

parameter λit, the hazard function becomes the foundation of a default in-

tensity model. The default intensity model suggested by Duffie et al. (2007)
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assumes the defaults following a Poison distribution with a known parameter

λ. That is, Dit|λ ∼ i.i.d.Poisson(λ△t), where Dit denotes the dummy vari-

able for the i firm at time t with Dit = 1 for the firm is default and Dit = 0

for not default, λ is the parameter of the Poisson distribution, and △t is the

time interval. Thus, the default probability function is

Prob(Dit = x) =
(λ△t)xe−λ△t

x!
.

It is worth to note that if the parameter λ is constant, the default is a usual

Poisson process. However, λit = Λ(X it;β) = exp(X ′
itβ) is assumed in Duffie

et al. (2007). Since the explanatory variables X it are stochastic and then

λit is also stochastic, the default becomes a doubly stochastic processor Cox

process (Cox, 1955). Lefebvre (2005) points that if λit is non-stochastic,

a doubly stochastic process reduces to a usual Poisson process and then

the default can be assumed to be independent. Given λit = exp(X ′
itβ) is

correct specified and X it are observed, λit becomes non-stochastic. Thus,

Dit|X it ∼ i.i.d.Poisson(λit △t) is valid. Since the independence holds only

under conditions, it is called conditional independence. Given the conditional

independence, the joint likelihood function of Dit|X it for all i and t in sample

can be constructed and then the MLE (maximum likelihood estimator) are

obtainable. However, Das et al. (2007) provides evidences that the condi-

tional independence is rejected by Fisher dispersion test given all explana-

tory variables X it considered in existing literature. Instead of incorporating

other new explanatory variables with the default intensity model, Duffie et

al. (2009) and Chava et al. (2011) consider time frailty and industrial frailty

to model to capture the default correlation in the intensity model.
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2.1 Default Intensity Model with a Time Frailty

The default intensity model with a time frailty considered in Duffie et al.

(2009) is:

λit = exp(X ′
itβ + ηYt), i = 1, 2, . . . , m, t = ti, ti + 1, . . . , Ti,

where m denotes the number of firms considered in the sample, ti and Ti

are the beginning and ending time of the ith firm. And, λit represents the

default intensity of the ith firm at time t. Yt is the time frailty which follows

an Ornstein-Uhlenbeck (OU) stochastic process: dYt = −κYtdt+ dBt, where

B is a standard Brownian motion and κ represents the mean-reversion rate

of this process. X it denotes the explanatory variables observed for the the

ith firm at time t which consist of micro- and macro-economic variables. To

do the default intensity forecasts, X it is assumed to follow a first-order AR

process: X t = X ′
t−1γ + ut.

Denote a vector Di = (Diti , Di(ti+1), . . . , DiTi
) to represent the status of

default in the survival time period. To have Dit only with value 1 or 0, the

time interval △t is set to be small enough. This implies a firm commits

a default only once within a time interval. To be simplified, all defaults

of all firms in the sample are denoted as D = (D1, . . . ,Dm). Also denote

X i = (X iti , . . . ,X iTi
) as the sample values of explanatory variables for the

ith firm. And then, all sample values of explanatory variables of all firms

are represented as X = (X1, . . . ,Xm). The vector of time frailty is denoted

as Y = (Y0, Y1, . . . , YT ), where T is the ending time of the sample period

under study. Define the joint likelihood function of the defaults of the ith

company as f(Di|X i,Y ;β, η). Under the condition which the default inten-

sity is known, the defaults are i.i.d. Poisson distributed since the conditional
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independence holds. Then the joint likelihood function becomes

f(Di|X i,Y ;β, η)

= f(Diti , Di(ti+1), . . . , DiTi
|X i,Y ;β, η)

= f(Diti |X i,Y ;β, η)× f(Di(ti+1)|X i,Y ;β, η)× · · · × f(DiTi
|X i,Y ;β, η)

=

Ti
∏

t=ti

(λit△t)
Dite−λit △t

Dit!

=

Ti
∏

t=ti

(λit △t)
Dite−λit △t

= e−
∑Ti

t=ti
λit △t

Ti
∏

t=ti

(λit△t)
Dit

= e−
∑Ti

t=ti
λit △t

Ti
∏

t=ti

[Ditλit△t+ (1−Dit)].

Then, the joint likelihood function from all sample observations is

L(D,X,Y ; κ,γ, η,β)

= L(D∞,D∈, . . . ,Dm|X,Y ; η,β)×L(X,Y ; κ,γ)

= f(D1|X,Y ; η,β) f(D2|X,Y ; η,β) · · · f(Dm|X,Y ; η,β)L(X;γ)L(Y ; κ)

=

m
∏

i=1

(

e−
∑Ti

t=ti
λit △t

Ti
∏

t=ti

[Ditλit△t+ (1−Dit)]

)

L(X;γ)L(Y ; κ) (1)

Since the time frailty Y is unobservable and neither is the joint likelihood

function, the MLE can not be obtained from the maximization of (1). To

remove the unobserved time frailty from the likelihood function, a general

solution is to take an expectation of the joint likelihood function and then

obtain the MLE from maximization of the expected joint likelihood function.

The expected joint log likelihood function is

log[L(D,X; κ,γ, η,β)]

=

∫

log[L(D,X, y; κ,γ, η,β)] pY (y)dy
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=

∫

[logL(D1,D2, . . . ,Dm|X,Y ; η,β) + logL(X;γ) + logL(y; κ)] pY (y) dy

= E[logL(D1,D2, . . . ,Dm|X,Y ; η,β)] + E[logL(Y ; κ)] + logL(X;γ), (2)

where pY (·) is the unconditional probability density function of the time

frailty. Since the term logL(X;γ) in (2) is independent to the time frailty,

the parameter γ can be estimated by regressing X t on X t−1 and parameters

η, β, and κ can be estimated by maximizing

E[logL(D1,D2, . . . ,Dm|X,Y ; η,β)] + E[logL(Y ; κ)]

= E

{

log

[

m
∏

i=1

(

e−
∑Ti

t=ti
λit △t

Ti
∏

t=ti

[Ditλit △t+ (1−Dit)]

)]}

E

{

log

[

φ

(

y1|µ = 0, σ2 =
1

2κ

) T
∏

t=2

φ

(

yt|µ = e−κyt−1, σ
2 =

1− e−κ

2κ

)

]}

(3)

where φ(·) denotes the density function of a Gaussian distribution. Since the

time frailty is still unobservable, MCEM (Monte Carlo Expectation Maxi-

mization) has to be applied to estimate the parameters η, β, and κ. The

details of the MECM for the parameter estimations on the default intensity

model with a time frailty are referred as to Duffie et al. (2009).

2.1.1 EM Algorithm for Model Estimation

The parameter vector, θ is estimated with the MLE by maximizing (3). As

for the expectation in (3), it cannot be calculated but but can be approx-

imated by Monte Carlo integration. This gives rise to the stochastic EM

algorithm. Maximum likelihood estimation of the intensity parameter vector

θ involves the following steps:

1. Initialize an estimate of θ = (β, η, κ) at θ(0) = (β̃
MLE

noF , 0.05, 0), where

β̃
MLE

noF is the maximum likelihood estimator of β in the model without

frailty.
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2. (E-step) Given the current parameter estimate θ(k) and the observed

covariate and default data X and D, respectively, draw m + n in-

dependent sample paths Y (1), . . . , Y (m+n) from the conditional density

pY

(

·|X,D, θ(k)
)

of the latent OU frailty process Y . This is done with

the Gibbs sampler described below. By the Law of Large Number,

Q̂
(

θ(k)
)

=
1

n

m+n
∑

k=m+1

logL
(

D|X, Y (k);β, η
)

→

∫

logL(D|X, y;β, η) pY (y) dy = E[logL(D|X,Y ; η,β)]

3. (M-step) Maximize Q̂
(

θ(k)
)

with respect to the parameter vector θ,

for example, by Newton–Raphson. The maximizing choice of θ is the

new parameter estimate θ(k+1).

4. Replace k with k + 1, and return to Step 2, repeating the E-step and

the M-step until reasonable numerical convergence is achieved.

2.1.2 Applying Gibbs Sampler with Frailty

The posterior density pY (·|X,D, θ) of the latent frailty process Y is illus-

trated as follows. This is a complicated high-dimensional density. It is pro-

hibitively computationally intensive to directly generate samples from this

distribution. Nevertheless, MCMC methods can be used to explore this pos-

terior distribution by generating a Markov chain over Y , denoted {Y (n)}Nn≥1,

whose equilibrium density is pY (·|X,D, θ).

The linchpin to MCMC is that the joint distribution of the frailty path

Y = {Yt : 0 ≤ t ≤ T} can be broken down into a set of conditional distribu-

tions. A general version of the Clifford-Hammersley (CH) Theorem (Ham-

mersley and Clifford (1970) and Besag (1974)) provides conditions under

which a set of conditional distributions characterize a unique joint distribu-
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tion. For example, in our setting, the CH Theorem indicates that the density

pY (·|X,D, θ) is uniquely determined by the conditional distributions:

Y0 | Y1, Y2, . . . , YT ,X,D, θ

Y1 | Y0, Y2, . . . , YT ,X,D, θ

...
...

YT | Y1, Y2, . . . , YT−1,X,D, θ

or

Yt|Y (−t),X,D, θ.

It remains to show how to sample Yt from its conditional distribution

given Y (−t). As, for 0 ≤ t ≤ T ,

p(Yt|X,D,Y (−t), θ) =
p(X,D, Yt,Y (−t), θ)

p(X,D,Y (−t), θ)

∝ p(X,D, Yt,Y (−t), θ)

= p(X,D|Yt,Y (−t), θ)× p(Yt,Y (−t), θ)

=
p(X,D, θ|Yt,Y (−t))

p(θ|Yt,Y (−t))
× p(Yt,Y (−t), θ)

∝ p(X,D, θ|Yt,Y (−t))× p(Yt,Y (−t), θ)

= p(θ|X,D, Yt,Y (−t))× p(X,D|Yt,Y (−t))× p(Yt,Y (−t), θ)

∝ L(θ|X,D, Yt,Y (−t))× p(Yt,Y (−t), θ)

= L(θ|X,D, Yt,Y (−t))× p(Yt|Y (−t), θ)× p(Y (−t), θ)

∝ L(θ|X,D, Yt,Y (−t))× p(Yt|Y (−t), θ).

Given the the Markov property, p(Yt|Y (−t), θ) = p(Yt|Yt−1, Yt+1, θ), then

p(Yt|Y (−t), θ) = p(Yt|Yt−1, Yt+1, θ)

=
p(Yt−1, Yt, Yt+1|θ)

p(Yt−1, Yt+1|θ)

8



∝ p(Yt−1, Yt, Yt+1|θ)

= p(Yt−1, Yt|θ)× p(Yt+1|Yt−1, Yt, θ)

= p(Yt−1, Yt|θ)×
p(Yt+1, Yt−1|Yt, θ)

p(Yt−1|θ)

=
p(Yt−1, Yt|θ)

p(Yt−1|θ)
× p(Yt+1, Yt−1|Yt, θ)

=
p(Yt−1, Yt|θ)

p(Yt−1|θ)
× p(Yt+1|Yt, θ)× p(Yt−1|Yt, θ)

∝
p(Yt−1, Yt|θ)

p(Yt−1|θ)
× p(Yt+1|Yt, θ)

= p(Yt|Yt−1, θ)× p(Yt+1|Yt, θ).

Hence

p(Yt|X,D,Y (−t), θ) ∝ L(θ|X,D, Yt,Y (−t))× p(Yt|Y (−t), θ)

∝ L(θ|X,D, Yt,Y (−t))× p(Yt|Yt−1, θ)× p(Yt+1|Yt, θ).

This equation determines the desired conditional density of Yt given Yt−1 and

Yt+1 in an implicit form. Although it is not possible to directly draw samples

from this distribution, the Random Walk Metropolis-Hastings algorithm is

applicable. The proposal density q(Y
(n)
t |X,D, Y

(n−1)
t , θ) = N(Y

(n−1)
t , 4),

that is, the mean is taken to be the value of Yt from the previous iteration of

the Gibbs sampler, and the variance to be twice the variance of the standard

Brownian motion increments.

2.1.3 Random Walk Metropolis–Hastings Algorithm

The Random Walk Metropolis–Hastings algorithm to sample Yt in the nth

iteration of the Gibbs sampler is as follows.

1. Draw a candidate y ∼ N(Y
(n−1)
t , 4)
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2. Compute

α(y, Y
(n)
t ) = min

(

L(θ|X,D, Yt = y,Y
(n−1)
(−t) )

L(θ|X,D, Y
(n−1)
t ,Y

(n−1)
(−t) )

, 1

)

3. Draw U with the uniform distribution on (0, 1), and let

Y
(n)
t =







y ifU < α(y, Y
(n)
t )

Y
(n−1)
t otherwise

2.2 Default Intensity Model with an Industrial Frailty

Since the joint likelihood in the section (2.1) function of the default inten-

sity is established under conditional independence among all time periods t

and all firms i, the conditional independence will not hold when the default

correlation exists among time t and/or among firms i. It is clear that the

time frailty introduced by Duffie et al. (2009) is designed to capture the time

dependence of defaults. However, the time frailty is not able to capture the

default correlation caused from the dependence among firms. Since the in-

dustrial momentum is well documented to be the source of firm dependence,

Chava et al. (2011) introduces an industrial frailty into the default intensity

model. The default intensity model with an industrial frailty is modified as

λjit = Zj exp(X
′
jitβ),

with j = 1, . . . , S where S is the number of industries classified, i = 1, . . . , sj

where sj is the number of firms in the jth industry, t = tji, tji + 1, . . . , Tji

where tji and Tji denote the beginning and ending time of the ith firm in

jth industry, λjit and Xjit are the default intensity and sample values of

explanatory variables of the ith firm in jth industry at time t, respectively,

and Zj denotes the industrial frailty of the jth industry. To have conjugate

posterior distributions and closed form solutions for the parameters, Zj ∼
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i.i.d.Γ(1/θ, θ) is assumed. To simplify the model, the dynamic system of

AR(1) model for X t is ignored. In addition, by taking the time interval △t

small enough so that the number of default, Djit, equals to 1 or 0 only.

Let Dji = (Djitji, Dji(tji+1), . . . , DjiTji
) represent the default status of ith

firm which in the jth industry at all time intervals in its sample period t ∈

[tji, Tji]. Denote Dj = (Dj1, Dj2, . . . , Djsj) and Xj = (Xj1,Xj2, . . . , bXjsj)

as default status and sample values of explanatory variables, respectively,

for all firms in the jth industry. Then, D = (D1, . . . ,DS) and X =

(X1, . . . ,XS) denote default status and sample values of explanatory vari-

ables for all firms in S industries, respectively. Also denote Z = (Z1, . . . , ZS)

as the industrial frailty vector for S industries. SinceDjit|X,Z ∼ i.i.d.Poisson(λjit),

the joint likelihood is

L(D,X,Z; θ,β)

= L(Z; θ)

S
∏

j=1

sj
∏

i=1

L(Dji|X,Z;β)

= L(Z; θ)
S
∏

j=1

sj
∏

i=1



e
−

∑Tji
t=tji

λjit △t
Tji
∏

t=tji

(λjit△t)
Djit



 ,

where L(Z; θ) represents the joint likelihood function of industrial frailties,

Z1, . . . , ZS. As the time interval can be chosen as 1, i.e., △t = 1, the joint

log likelihood function becomes

log[L(D,X,Z; θ,β)]

= log[L(Z; θ)] +

S
∑

j=1

sj
∑

i=1





Tji
∑

t=tji

Djit log(λjit)−

Tji
∑

t=tji

λjit





= log[L(Z; θ)] +

S
∑

j=1

sj
∑

i=1





Tji
∑

t=tji

{Djit [log(Zj) +X ′
jitβ]− ZjΛji}



 (4)

where Λji =
∑Tji

t=tji
exp(X ′

jitβ).
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Since Zj ∼ i.i.d.Γ(1/θ, θ),

log[L(Z; θ) =

S
∑

j=1

log

(

1

θ1/θ Γ
(

1
θ

)Z
1

θ
−1

j exp

(

−
Zj

θ

)

)

=

S
∑

j=1

−
Zj

θ
+

(

1

θ
− 1

)

log(Zj)−

[

log Γ

(

1

θ

)

+
1

θ
log(θ)

]

(5)

Then, substitute (5) into (4) and then

log[L(D,X,Z; θ,β)]

=
S
∑

j=1

[(

1

θ
− 1 +D∗

j

)

log(Zj)−
Zj

θ

]

− S

[

log Γ

(

1

θ

)

+

(

1

θ

)

log(θ)

]

+

S
∑

j=1

sj
∑

i=1





Tji
∑

t=tji

Djit (X
′
jitβ)− ZjΛji



 (6)

Furthermore, the prior distribution of industrial frailty is assumed as Zj ∼

i.i.d.Γ(1/θ, θ) and then the posterior distribution of Zj under the observed

information Ω = (D,X, θ,β) is

posterior ∝ prior × Likelihood

∝





Z
1

θ
−1

j exp
(

−
Zj

θ

)

θ
1

θ Γ
(

1
θ

)



×

sj
∏

i=1



e
−

∑Tji
t=tji

λjit

Tji
∏

t=tji

[Djit λjit + (1−Djit)]





∝





Z
1

θ
−1

j exp
(

−
Zj

θ

)

θ
1

θ Γ
(

1
θ

)



×

sj
∏

i=1



exp





Tji
∑

t=tji

Zj exp(X
′
jitβ)





Tji
∏

t=tji

[Zj exp(X
′
jitβ)]

Djit





∝







Z
( 1

θ
+D∗

j )−1

j exp
(

−Zj

[

− 1
α
+
∑sj

i=1

∑Tji

t=tji
exp(X ′

jitβ)
])

θ
1

θ Γ
(

1
θ

)







×

sj
∏

i=1

Tji
∏

t=tji

[exp(X ′
jitβ)]

Djit

∝







Z
( 1

θ
+D∗

j )−1

j exp
(

−Zj

[

−1
θ
+
∑sj

i=1

∑Tji

t=tji
exp(X ′

jitβ)
])

θ
1

θ Γ
(

1
θ

)






(7)
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Let

Aj =

(

1

θ
+D∗

j

)

Cj =





1

θ
+

sj
∑

i=1

Tji
∑

t=tji

exp(X ′
jitβ)





=

(

1

θ
+

sj
∑

i=1

Λji

)

.

It is clear that the posterior distribution of Zj is Γ(Aj, 1/Cj) with

E(Zj|Ω) = Aj/Cj

E[log(Zj)|Ω] = ψ(Aj)− log(Cj),

where ψ(·) is a digamma function. Thus, given Ω = (D,X, θ,β) and the

parameters of posterior distributions of industrial frailties Zj, j = 1, . . . , S,

Aj and Cj , the expected joint log likelihood is

E[logL(D,X,Z; θ,β)|Ω, Aj, Cj, j = 1, . . . , S]

=

S
∑

j=1

[(

1

θ
− 1 +D∗

j

)

E[log(Zj|Ω)]−
E(Zj|Ω)

θ

]

− S

[

log Γ

(

1

θ

)

+

(

1

θ

)

log(θ)

]

+

S
∑

j=1

sj
∑

i=1





Tji
∑

t=tji

DjitX
′
jitβ − E(Zj|Ω)Λji





=
S
∑

j=1

[(

1

θ
− 1 +D∗

j

)

[ψ(Aj)− log(Cj)]−
Aj/Cj

θ

]

− S

[

log Γ

(

1

θ

)

+

(

1

θ

)

log(θ)

]

+

S
∑

j=1

sj
∑

i=1





Tji
∑

t=tji

DjitX
′
jitβ −

Aj

Cj

Λji



 (8)

Since the industrial frailties are removed by taking expectation, the MLE is

obtainable by maximizing (8) .
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2.3 MCEM Algorithm

Since the expected joint log likelihood in (8) is evaluated under Ω, Aj , and Cj

are known, the following EM algorithm is necessary. According to the initial

value settings of the Duffie et al. (2009) and Chava, et al. (2011), the initial

values of θ and β are set as (θ(0),β(0)) = (1, β̃
MLE

noF ), where β̃
MLE

noF is the MLE

of the default intensity model without frailty. Then, the initial values of Aj

and Cj are

A
(0)
j =

(

1

θ(0)
+D∗

j

)

C
(0)
j =





1

θ(0)
+

sj
∑

i=1

Tji
∑

t=tji

exp(X ′
jitβ̃

MLE

noF )



 .

Substitute (θ(0),β(0)) = (1, β̃
MLE

noF ), A
(0)
j , and C

(0)
j into (8), the expected joint

log likelihood is evaluated as

E[logL(D,X,Z; θ,β)|Ω, A
(0)
j , C

(0)
j , j = 1, . . . , S]

=
S
∑

j=1

[

(

1

θ
− 1 +D∗

j

)

[ψ(A
(0)
j )− log(C

(0)
j )]−

A
(0)
j /C

(0)
j

θ

]

−S

[

log Γ

(

1

θ

)

+

(

1

θ

)

log(θ)

]

+
S
∑

j=1

sj
∑

i=1





Tji
∑

t=tji

DjitX
′
jitβ −

A
(0)
j

C
(0)
j

exp(X ′
jitβ)



 . (9)

and then the first-step MLE of θ and β are obtained as

{θ̃(1), β̃
(1)
} = argmaxE[logL(D,X,Z; θ,β)|Ω, A

(0)
j , C

(0)
j , j = 1, . . . , S].

Given θ̃(1) and β̃
(1)
, the Aj and Cj are re-evaluated as

A
(1)
j =

(

1

θ̃(1)
+D∗

j

)

C
(1)
j =





1

θ̃(1)
+

sj
∑

i=1

Tji
∑

t=tji

exp(X ′
jitβ̃

(1)
)



 ,
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and then the expected joint log likelihood is re-evaluated as

E[logL(D,X,Z; θ,β)|Ω, A
(1)
j , C

(1)
j , j = 1, . . . , S]

=
S
∑

j=1

[

(

1

θ
− 1 +D∗

j

)

[ψ(A
(1)
j )− log(C

(1)
j )]−

A
(1)
j /C

(1)
j

θ

]

−S

[

log Γ

(

1

θ

)

+

(

1

θ

)

log(θ)

]

+
S
∑

j=1

sj
∑

i=1





Tji
∑

t=tji

DjitX
′
jitβ −

A
(1)
j

C
(1)
j

exp(X ′
jitβ)



 . (10)

Then, the second-step MLE of θ and β are obtained as

{θ̃(2), β̃
(2)
} = argmaxE[logL(D,X,Z; θ,β)|Ω, A

(1)
j , C

(1)
j , j = 1, . . . , S].

Repeat above algorithm N steps till the MLE estimations of θ̃(N) and β̃
(N)

converge. Then, θ̃(N) and β̃
(N)

are the final MLE estimations for the default

intensity model with industrial frailty.

2.4 Default Intensity Model with Dual Frailties

Lin and Chen (2015) shows that the time frailty of Duffie et al. (2009) can

only capture the default correlation along time t and the industrial frailty

of Chava et al. (2011) can only capture the default clustering among firms

i. Consequently, the conditional independence will not hold for the default

intensity model with either time frailty or industrial frailty. Therefore, it is

necessary to consider a default intensity model with both time and indus-

trial frailties simultaneously. This is called the “dual-frailty default intensity

model.” The default intensity in the dual-frailty default intensity model is

specified as

λjit = Zj exp(X
′
jitβ + ηYt), j = 1, . . . , S, i = 1, 2, . . . , m, t = ti, ti + 1, . . . , Ti,
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where the time frailty is also assumed to follow an OU process: dYt =

−κ Yt dt+dBt, and the industrial frailty is also assumed to be Zj ∼ i.i.d.Γ(1/θ, θ).

The parameters under estimate include θ,β, η, and κ. By assuming the in-

dependence between the time and industrial frailties, the joint likelihood

function is

L(D,X,Y ,Z; θ,β, η, κ)

= L(Y ; κ)L(Z; θ)
S
∏

j=1

sj
∏

i=1

L(Dji|X,Y ,Z;β, η)

= L(Y ; κ)L(Z; θ)
S
∏

j=1

sj
∏

i=1



e
−

∑Tji
t=tji

λjit

Tji
∏

t=tji

(λjit)
Djit



 ,

and then the joint log likelihood function is

log[L(D,X,Y ,Z; θ,β, η, κ)]

= log[L(Y ; κ)] + log[L(Z; θ)] +

S
∑

j=1

sj
∑

i=1





Tji
∑

t=tji

Djit log(λjit)−

Tji
∑

t=tji

λjit



 .

Since there are two latent variables, time frailty and industrial frailty, they

can be removed by taking double expectation on the joint log likelihood

function. The double expected joint log likelihood function is

E







E



log[L(Y ; κ)] + log[L(Z; θ)] +
S
∑

j=1

sj
∑

i=1





Tji
∑

t=tji

Djit log(λjit)−

Tji
∑

t=tji

λjit















= E[logL(Y ; κ)] + E







E



log[L(Z; θ)] +

S
∑

j=1

sj
∑

i=1





Tji
∑

t=tji

Djit log(λjit)−

Tji
∑

t=tji

λjit















.

In above equation, the first term is the same as the one in (3) and the second

term is also the result in (8). Therefore, double expected joint log likelihood

function can be rewritten as

E







E



log[L(Y ; κ)] + log[L(Z; θ)] +

S
∑

j=1

sj
∑

i=1





Tji
∑

t=tji

Djit log(λjit)−

Tji
∑

t=tji

λjit














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= E

{

log

[

φ

(

y1|µ = 0, σ2 =
1

2κ

) T
∏

t=2

φ

(

yt|µ = e−κyt−1, σ
2 =

1− e−κ

2κ

)

]}

+E

{

S
∑

j=1

[(

1

θ
− 1 +D∗

j

)

[ψ(Aj)− log(Cj)]−
Aj/Cj

θ

]

}

−S

[

log Γ

(

1

θ

)

+

(

1

θ

)

log(θ)

]

+E







S
∑

j=1

sj
∑

i=1





Tji
∑

t=tji

DjitX
′
jitβ −

Aj

Cj

exp(X ′
jitβ)











. (11)

Using the MCEM algorithm which is similar to the one in the default inten-

sity model with time frailty, the MLE estimators for parameters κ, η,β are

obtainable.

2.5 Fisher’s Dispersion Test for Conditional Indepen-

dence

Das et al. (2007) applies the Fisher’s dispersion test to check the conditional

independence of defaults. Denote U(t) =
∫ t

0

∑n
i=1 λis I[πk>s] ds, where πk

denotes the survival time, I[πk>t] is the indicator function for status of default,

and λis is the default intensity of firm i at time s. Note that U(t) represents

the summation of default intensities of all survival firms from the beginning

to time t. It is obvious that c = U(tk+1) − U(tk) represents the expected

number of defaults within the time period [tk, tk+1]. In addition, define Wk =
∑n

i=1 I[tk<τi<tk+1]
to represent the observed number of default firms with time

interval [tk, tk+1]. Fixing the bin size ĉ, a simple test for the null hypothesis

of W1, . . . ,WTĉ
being independent Poisson distributed variables with mean

parameter c is the Fisher’s dispersion test, where Tĉ is the number of time

intervals with length ĉ. Under the null of conditional independence,

W =

Tĉ
∑

k=1

(Wk − ĉ)2

ĉ
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is distributed as a χ2 random variable with Tĉ − 1 degrees of freedom, where

ĉ = Û(tk+1)− Û(tk)

=

tk+1
∑

t=1

n
∑

i=1

λ̂is I[πk>s] −

tk
∑

t=1

n
∑

i=1

λ̂is I[πk>s].

Note that the mentioned Fisher’s dispersion test is designed to test the con-

ditional independence along time units.

Alternatively, to test the conditional independence among individual firms

i, the test statistic is considered as

W ∗ =

S
∑

j=1

(W ∗
j − ĉ∗j )

2

ĉ∗j
,

whereW ∗
j =

∑sj
i=1

∑T
t=1Djit denotes the number of defaults in the jth indus-

try within the sample period and ĉ∗j =
∑T

i=1

∑sj
i=1 λ̂is denotes the expected

number of defaults implied by the considered model of the jth industry. The

test statistic W ∗, under the null of conditional independence, is distributed

as a χ2 random variable with S − 1 degrees of freedom.

3 Empirical Studies

The sample observations are the public listed firms on Taiwan’s stock market

from January of 1995 to January of 2015. All data are collected from the Tai-

wan Economic Journal (TEJ). The explanatory variables considered in this

paper are the same as in Duffie, et al. (2007) which include the firm char-

acteristic variables, the annual returns of stock (denoted as YRT.STOCK)

and distance to default (denoted as DTD), and the macroeconomic variables,

the yield rate of three-month Treasure Bills and the annual return of S&P

500 index. In this paper, we replace the yield rate of three-month Treasure

Bills with three-month interest rate of certificate deposit of The First Bank
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in Taiwan (denoted as RF) and the annual return of S&P 500 index with the

annual return of of Taiwan Stock Weighted Index (denoted as YRT.INDEX).

Both of the annual returns are computed as the trailing 1-year return. Com-

bining the parameter setting of the KMV model and the solution of nonlinear

equations of Ronn and Verma (1986), the distances to default are calculated

in this paper. To remove the extreme values of calculated distances to de-

fault, 5 % of winsorizations from top and from bottom are considered as in

Duan (2000) and Duffie et al. (2007).

There are 16 types of default events listed on TEJ and only types C, D,

E, H, F, G, I, N, S, and Z are considered as default events which are the same

as the ones of Huang et al. (2012). Since monthly data are used, the default

month is set as the month of the day of default occurred. According to Chava

et al. (2011) and Huang et al. (2012), to remove the forward bias, the previous

month of explanatory variables are taken as the independent variables and

the default dummy of the current month as the dependent variable. Besides,

there are 81 industry classifications (remove the industries related to finance)

considered in this paper. The summary statistics of explanatory variables are

shown in Table 1.

Table 1. Summary Statistics for Explanatory Variables

Mean Median Std Max Min

RF 0.018 0.011 0.015 0.068 0.004

YRT.INDEX 0.058 0.086 0.240 0.799 -0.499

DTD 5.458 4.937 3.322 22.100 -3.600

YRT.STOCK 0.150 0.021 0.680 26.440 -0.987

Note that “Std” stands for sample standard deviation, “Max” and “Min” for the
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sample maximum and minimum, respectively.

Table 2. Estimation Results of Default Intensity Models

No Frailty Industrial Frailty Time Frailty Dual-Frailty

Intercept −6.819∗∗∗ −6.811∗∗∗ −6.860∗∗∗ −6.846∗∗∗

(0.225) (0.224) (0.222) (0.222)

RF 17.181∗∗∗ 15.533∗∗∗ 12.233∗∗∗ 10.803∗∗

(4.307) (4.317) (4.455) (4.501)

YRT.INDEX 0.571∗ 0.548∗ 0.288 0.274

(0.292) (0.293) (0.311) (0.311)

DTD −0.298∗∗∗ −0.289∗∗∗ −0.292∗∗∗ −0.283∗∗∗

(0.037) (0.037) (0.037) (0.037)

YRT.STOCK −2.952∗∗∗ −2.973∗∗∗ −3.144∗∗∗ −3.156∗∗∗

(0.318) (0.318) (0.320) (0.321)

θ 0.040∗∗∗ 0.026∗∗∗

(0.006) (0.004)

η 0.612∗∗∗ 0.624∗∗∗

(0.084) (0.086)

κ 0.613∗∗∗ 0.629∗∗∗

(0.129) (0.131)

log-Likelihood -1294.960 -1291.774 -1268.831 -1266.921

Note that the column titles, “No Frailty”, “Industrial Frailty”, “Time Frailty”, and “Dual

Frailty” stand for for default intensity models without frailty, with industrial frailty, with

time frailty, and with dual frailties, respectively.

From the estimation results shown in Table 2, the marginal effect of risk-

free interest rate is always significantly positive, which indicates that the
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higher level of interest rate the more risk of firm default. This is because

the risk-free interest rate represents the capital cost of firms so that the

default risk is high when the capital cost is high. The variable YRT.INDEX

is only significantly positive for models without frailties and the model with

industrial frailty. However, it is insignificant for models with time frailty and

dual frailties. This is because the annual return of aggregate stock is the

proxy of the opportunity cost of capital. The marginal effect of YRT.INDEX

is similar to the ones of RF. As to the marginal effect of distance to default,

DTD, it is significantly negative in all models. Since the distance to default

is a measure of default risk, it is positively correlated with default intensity

and then the marginal effect is positive rationally. In addition, the marginal

effect of annual stock return of individual firm is significantly positive for all

models. This result indicates the higher of individual firm’s stock return the

higher default risk this firm commits. This maybe because the stock return

reflects the market value of individual firm and then the higher stock return

implies better performance of the firm and then the default risk is relative

low.

The estimated coefficient of the industrial frailty, θ̂, in the model with

pure industrial frailty is 0.040 which is significant at 1 % level. And the

θ̂ for the model with dual frailties is 0.026 which is also significant at 1 %

level. As for the estimated coefficients, η̂, they are 0.612 and 0.624 for the

models with pure time frailty and dual frailties, respectively, and are both

significant at 1 % level. For the comparisons of model fitting, the fitted log

joint likelihood value is getting high as the time frailty or industrial frailty

or dual frailties are included in the model. The model with dual frailties has

the smallest log joint likelihood value among the considered models. These

results imply that no matter the time frailty or the time frailty or the dual
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frailties improve the model fitting of the default intensity model.

Since the conditional independence of all sample observations depends on

the conditional independence along time (t = 1, . . . , T ) and among individu-

als (i = 1, . . . , Ti), the Fisher’s dispersion test is conducted for sample splits

along time and for sample among individual firms. For the tests for sample

splitting along time, the results are shown in Table 3. The considered bin

sizes include c = 2, 4, 6, 8, 10 and their corresponding number of sub-samples

are 100 (df = 99), 50 (df=49), 34 (df=33), 25 (df = 24), and 20 (df = 19),

respectively. It is clear that the test statistics are all significant at 1 % for

all bin sizes considered. This implies that the conditional independence does

not hold for the frailty intensity model without frailty. For the model with

an industrial frailty, all test statistics are also significant which indicates that

the conditional independence does not hold for the default intensity model

with an industrial frailty. As for the Duffie et al. (2009)’s model with a time

frailty, all statistics are insignificant for all considered bin sizes. It can also

find that all test statistics are insignificant for all bin sizes. These two results

imply that the time dependence of defaults can be captured by incorporating

with a time frailty. It is worth noting that the industrial frailty itself can not

capture the time dependence of defaults.

Table 3. Fisher’s Dispersion Tests along Time

No Frailty Industrial Frailty Time Frailty Dual-Frailty

bin df W P-value W P-value W P-value W P-value

2 99 173.29 0.00 171.63 0.00 106.24 0.29 101.01 0.42

4 49 82.20 0.00 78.43 0.00 43.07 0.71 38.46 0.86

6 33 53.45 0.01 49.50 0.03 21.09 0.94 17.39 0.98

8 24 44.28 0.00 42.59 0.01 17.24 0.83 19.44 0.72

10 19 66.70 0.00 65.73 0.00 13.20 0.82 15.13 0.71
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Note that “bin” indicates the bin size, “W” denotes the Fisher’s dispersion test statistic,

and “P-value” is the one-tail p-value of the test statistic W .

For checking the conditional independence among the individual firms, all

firms are classified into 81 groups by industrial codes specified in TEJ. Table 4

shows the testing results. The test statistic, W ∗, is significant at 10 % which

indicates that the conditional independence does not hold for the model

without any frailty. The test statistic is also significant at 10 % for the model

with time frailty. This result indicates that the default dependence can not be

captured by the time frailty. However, for the model with industrial frailty or

with dual frailties, the test statistics are insignificant so that the conditional

independence in the default intensity model is not rejected. Finally, the test

statistic is still insignificant for the default intensity model with dual frailties.

Table 4. Fisher’s Dispersion Tests among Industries

No Frailty Industrial Frailty Time Frailty Dual-Frailty

df W ∗ P-value W ∗ P-value W ∗ P-value W ∗ P-value

80 98.407 0.080 85.375 0.320 97.633 0.088 88.899 0.232

In summary, the default dependence is confirmed from the dependence

along time and among individual firms. Incorporating a time frailty in the

default intensity model can only capture the time dependence but not the de-

pendence among firms. On the other hand, incorporating an industrial frailty

in the default intensity model can only capture the dependence among indi-

vidual firms but not the dependence along time. However, the dependence

along time and among individual firms can be captured by the dual frailties

in the default intensity model. Therefore, the default intensity model with

dual frailties is suggestive.

23



4 Conclusions

The default intensity model has been widely used to measure the default risk

of firms. The conditional independence is a crucial condition to have the

model estimation appropriately. Even though, a time frailty is introduced

by Duffie et al. (2009) to capture the default dependence along time and an

industrial frailty is introduced by Chava et al. (2011) to capture the default

dependence among firms, Lin and Chen (2015) shows that the conditional

independence does not hold for the model either only with a time frailty or

only with an industrial frailty. Therefore, a dual-frailty model with both

time and industrial frailties is suggested in this paper.

Assuming the time frailty is independent to the industrial frailty, the

joint log likelihood is derived first in this paper. And then, the MCEM

procedures are also derived to do the model estimation. Using the monthly

data of Taiwan’s public listed firms from January of 1995 to January of

2015, the dual-frailty model is applied. From the estimation results, not only

the model fitting is improved but also the conditional independence is not

rejected by the Fisher’s dispersion test. Therefore, the dual-frailty default

intensity model is suggestive.

24



References

Altman, Edward I. (1968), “Financial Ratios, Discriminant Analysis and

the Prediction of Corporate Bankruptcy,” The Journal of Finance, 23,

589–609.

Besag, J.E. (1974), “Spatial Interaction and the Statistical Analysis of Lattice

Systems,” Journal of the Royal Statistical Society, Series B, 36, 192–

326.

Campbell, J. Y., J. Hilscher, and J. Szilagyi (2008), ”In Search of Distress

Risk,” The Journal of Finance, 62, 2899–2939.

Chava, S., C. Stefanescu, and S. Turnbull (2011), “Modeling the Loss Dis-

tribution,” Management Science, 57, 1267–1287.

Cox, David R. (1955), “Some Statistical Methods Connected with Series of

Events,” Journal of the Royal Statistical Society, 17, 129–164.

Cox, David R. (1972), “Regression Models and Life-Tables,” Journal of the

Royal Statistical Society, 34, 187–220.

Das, S., D. Duffie, N. Kapadia, and L. Saita (2007), “Common Failings:

How Corporate Defaults Are Correlated,” The Journal of Finance, 62,

93–117.

Duan, J.C. (2010), “Clustered Defaults,” Working paper, Risk Management

Institute, Business School, National University of Singapore.

Duffie, D., L. Saita, and K. Wang (2007), “Multi-Period Corporate De-

fault Prediction with Stochastic Covariates,” Journal of Financial Eco-

nomics, 83, 635–665.

25



Duffie, D., A. Eckner, G. Horel, and L. Saita (2009), “Frailty Correlated

Default,” The Journal of Finance, 64, 2089–2123.

Hammersley, J. M., and P. Clifford (1970), “Markov Fields on Finite Graphs

and Lattices,” unpublished.

Huang, R.-C. and T.-C. Jan (2011),“Frailty Correlated Default Model: An

Application of Taiwan’s Public Listed Firms, ” Journal of Chinese

Statistic, 49, 98–122.

Huang, R.-C., C.-S. Wu, J.-L. Lin, and J.-S. Sio (2012), “An Empirical Study

of the Determinants of Financial Distress for Taiwan Corporations,” ,

13, 55–77.

Lefebvre, Mario (2005), Applied Stochastic Processes, Springer.

Lin, G.-Y. and M.-Y. Chen (2015), “Re-examination on Default Clustering

for Taiwan Listed Firms: Industrial and Time Frailties Perspective,”

Working paper, Department of Finance, National Chung Hsing Univer-

sity, Taichung, Taiwan.

Ronn, E.I. and A.K. Verma (1986), “Pricing Risk-Adjusted Deposit Insur-

ance: An Option-Based Model,” The Journal of Finance, 41, 871–896.

Shumway, T. (2001), ”Forecasting Bankruptcy More Accurately: A Simple

Hazard Model,” The Journal of Business, 74, 101–124.

26


